Advanced searches left 3/3
Search only database of 7.4 mil and more summaries

Lewis Dot Diagram For Phosphorus

Summarized by PlexPage
Last Updated: 22 October 2020

* If you want to update the article please login/register

General | Latest Info

In almost all cases, chemical bonds are formed by interactions of valence electrons in atoms. To facilitate our understanding of how valence electrons interact, simple way of representing those valence electrons would be useful. The Lewis electron dot diagram is a representation of valence electrons of an atom that uses dots around the symbol of element. The number of dots equals the number of valence electrons in an atom. These dots are arranged to right and left and above and below the symbol, with no more than two dots on side. For example, Lewis electron dot diagram for calcium is simply figure 1 showing Lewis symbols for elements of the third period of the periodic table.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

9.1 Lewis Electron Dot Diagrams

Other halogen molecules form bonds like those in chlorine molecule: one single bond between atoms and three lone pairs of electrons per atom. This allows each halogen atom to have a noble gas electron configuration. The tendency of main group atoms to form enough bonds to obtain eight valence electrons is known as the octet rule. The number of bonds that atom can form can often be predicted from the number of electrons needed to reach octet; this is especially true of nonmetals of the second period of the periodic table. For example, each atom of group 14 elements has four electrons in its outermost shell and therefore requires four more electrons to reach the octet. These four electrons can be gained by forming four covalent bonds, as illustrated here for carbon in CCl 4 and silicon in SiH 4. Because hydrogen only needs two electrons to fill its valence shell, it is an exception to the octet rule. Transition elements and inner transition elements also do not follow the octet rule: group 15 elements such as nitrogen have five valence electrons in atomic Lewis symbol: one lone pair and three unpaired electrons. To obtain octet, these atoms form three covalent bonds, as in NH 3. Oxygen and other atoms in group 16 obtain octets by forming two covalent bonds: we will also encounter a few molecules that contain central atoms that do not have fill valence shell. Generally, these are molecules with central atoms from groups 2 and 12, outer atoms that are hydrogen, or other atoms that do not form multiple bonds. For example, in the Lewis Structures of beryllium dihydride, BeH 2, and boron trifluoride, BF 3, beryllium and boron atoms each have only four and six electrons, respectively. It is possible to draw a structure with a double bond between boron atom and fluorine atom in BF 3, satisfying the octet rule, but experimental evidence indicates bond lengths are closer to that expected for B - F single bonds. This suggests the best Lewis structure has three B - F single bonds and electron deficient boron. Reactivity of compound is also consistent with electron deficient boron. However, B - F bonds are slightly shorter than what is actually expected for B - F single bonds, indicating that some double bond characters are found in actual molecule. Atoms like boron atom in BF 3, which do not have eight electrons, are very reactive. It readily combines with molecule containing atom with a lone pair of electrons. For example, NH 3 reacts with BF 3 because lone pair of nitrogen can be shared with boron atom: elements in the second period of the periodic table can accommodate only eight electrons in their valence shell orbitals because they have only four valence orbitals.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

logo

Plex.page is an Online Knowledge, where all the summarized are written by a machine. We aim to collect all the knowledge the World Wide Web has to offer.

Partners:
Nvidia inception logo
jooble logo

© All rights reserved
2021 made by Algoritmi Vision Inc.

If your domain is listed as one of the sources on any summary, you can consider participating in the "Online Knowledge" program, if you want to proceed, please follow these instructions to apply.
However, if you still want us to remove all links leading to your domain from Plex.page and never use your website as a source, please follow these instructions.