Advanced searches left 3/3
Search only database of 7.4 mil and more summaries

Lewis Dot Structure For Phosphorus

Summarized by PlexPage
Last Updated: 19 October 2020

* If you want to update the article please login/register

General | Latest Info

We also use Lewis symbols to indicate the formation of covalent bonds, which are shown in Lewis structures, drawings that describe bonding in molecules and polyatomic ions. For example, when two chlorine atoms form chlorine molecule, they share one pair of electrons: Lewis structure indicates that each Cl atom has three pairs of electrons that are not used in bonding and one share pair of electrons. Dash is sometimes used to indicate shared pair of electrons: single shared pair of electrons is called a single bond. Each Cl atom interacts with eight valence electrons: six in lone pairs and two in single bond.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Lewis Symbols

We use Lewis symbols to describe valence electron configurations of atoms and monatomic ions. Lewis symbols consist of elemental symbols surrounded by one dot for each of its valence electrons: table below shows Lewis symbols for elements of the third period of the periodic table. Lewis symbols can also be used to illustrate formation of cations from atoms, as shown here for sodium and calcium: likewise, they can be used to show formation of anions from atoms, as shown here for chlorine and sulfur: following table demonstrates use of Lewis symbols to show transfer of electrons during formation of ionic compounds. Dalton knew of the experiments of French chemist Joseph Proust, who demonstrated that all samples of pure compound contain same elements in same proportion by mass. This statement is known as the law of Definite Proportions or law of constant composition. The suggestion that the numbers of atoms of elements in give compound always exist in the same ratio is consistent with these observations. For example, when different samples of isooctane are analyze, they are found to have a Carbon - to - hydrogen mass ratio of 5. 33: 1, as show In. It is worth noting that although all samples of a particular compound have the same mass ratio, converse is not true in general. That is, samples that have the same mass ratio are not necessarily the same substance. For example, there are many compounds other than isooctane that also have a Carbon - to - hydrogen mass ratio of 5. 33: 1. 00. Dalton also uses data from Proust, as well as results from his own experiments, to formulate another interesting law. The Law of Multiple Proportions states that when two elements react to form more than one compound, fixed mass of one element will react with masses of other elements in a ratio of small, whole numbers. For example, copper and chlorine can form green, crystalline solids with a mass ratio of 0. 558 g chlorine to 1 g copper, as well as brown crystalline solid with a mass ratio of 1. 116 g chlorine to 1 g copper. These ratios by themselves may not seem particularly interesting or informative; However, if we take the ratio of these ratios, we obtain a useful and possibly surprising result: small, whole - number ratio. {matheq}\frac{\frac{1.116 \text{ g Cl}}{1 \text{ g Cu}}}{\frac{0.558 \text{ g Cl}}{1 \text{ g Cu}}} = \frac{2}{1}{endmatheq} this can be explained by Atomic Theory if the copper - to - chlorine ratio in the brown compound is 1 copper atom to 2 chlorine atoms, and the ratio in the green compound is 1 copper atom to 1 chlorine atom. The ratio of chlorine atoms is therefore 2 to 1. The earliest recorded discussion of the basic structure of matter came from ancient Greek philosophers, scientists of their day. In the fifth century BC, Leucippus and Democritus argued that all matter was composed of small, finite particles that they called atomos, term derived from the Greek word for indivisible. They think of atoms as moving particles that differ in shape and size, and which could join together.


Lewis Structures

We also use Lewis symbols to indicate the formation of covalent bonds, which are shown in Lewis structures, drawings that describe bonding in molecules and polyatomic ions. For example, when two chlorine atoms form chlorine molecule, they share one pair of electrons: Lewis structure indicates that each atom has three pairs of electrons that are not used in bonding and one share pair of electrons. Dash is sometimes used to indicate shared pair of electrons: single shared pair of electrons is called a single bond. Each atom interacts with eight valence electrons: six in lone pairs and two in single bond.


The Octet Rule

Other halogen molecules form bonds like those in chlorine molecule: one single bond between atoms and three lone pairs of electrons per atom. This allows each halogen atom to have a noble gas electron configuration. The tendency of main group atoms to form enough bonds to obtain eight valence electrons is known as the octet rule. The number of bonds that atom can form can often be predicted from the number of electrons needed to reach octet; this is especially true of nonmetals of second period of the periodic table. For example, each atom of group 14 elements has four electrons in its outermost shell and therefore requires four more electrons to reach the octet. These four electrons can be gained by forming four covalent bonds, as illustrated here for carbon in CCl 4 and silicon in SiH 4. Because hydrogen only needs two electrons to fill its valence shell, it is an exception to the octet rule. Transition elements and inner transition elements also do not follow the octet rule: group 15 elements such as nitrogen have five valence electrons in atomic Lewis symbol: one lone pair and three unpaired electrons. To obtain octet, these atoms form three covalent bonds, as in NH 3. Oxygen and other atoms in group 16 obtain octets by forming two covalent bonds:

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Key Concepts and Summary

Thus far in this chapter, we have discussed various types OF bonds that form between atoms and / or ions. In all cases, these bonds involve sharing or transfer OF Valence shell electrons between atoms. In this section, we will explore typical methods for depicting Valence shell electrons and chemical bonds, namely Lewis symbols and Lewis Structures. Dalton knew OF experiments by French chemist Joseph Proust, who demonstrated that all samples OF pure compound contain same elements in same proportion by mass. This statement is known as law OF Definite Proportions or law OF constant composition. The suggestion that the numbers of atoms of elements in give compound always exist in the same ratio is consistent with these observations. For example, when different samples OF isooctane are analyze, they are found to have a Carbon - to - hydrogen mass ratio of OF 5. 33: 1, as show In. It is worth noting that although all samples of a particular compound have the same mass ratio, converse is not true in general. That is, samples that have the same mass ratio are not necessarily the same substance. For example, there are many compounds other than isooctane that also have a Carbon - to - hydrogen mass ratio OF 5. 33: 1. 00. Dalton also uses data from Proust, as well as results from his own experiments, to formulate another interesting law. The Law OF Multiple Proportions states that when two elements react to form more than one compound, fixed mass OF One element will react with masses OF other elements in ratio OF small, whole numbers. For example, copper and chlorine can form green, crystalline solids with a mass ratio OF 0. 558 g chlorine to 1 g copper, as well as brown crystalline solid with mass ratio OF 1. 116 g chlorine to 1 g copper. These ratios by themselves may not seem particularly interesting or informative; However, if we take the ratio OF these ratios, we obtain a useful and possibly surprising result: small, whole - number ratio. {matheq}\frac{\frac{1.116 \text{ g Cl}}{1 \text{ g Cu}}}{\frac{0.558 \text{ g Cl}}{1 \text{ g Cu}}} = \frac{2}{1}{endmatheq} this can be explained by Atomic Theory if the copper - to - chlorine ratio in the brown compound is 1 copper atom to 2 chlorine atoms, and the ratio in the green compound is 1 copper atom to 1 chlorine atom. The ratio of chlorine atoms is therefore 2 to 1. The earliest recorded discussion of the basic structure of matter came from ancient Greek philosophers, scientists of their day. In the fifth century BC, Leucippus and Democritus argued that all matter was composed of small, finite particles that they called atomos, term derived from the Greek word for indivisible. They think of of atoms as moving particles that differ in shape and size, and which could join together. Later, Aristotle and others came to the conclusion that matter consists of various combinations of four elementsfire, Earth, air, and water could be infinitely divide. Interestingly, these philosophers think about atoms and elements as philosophical concepts, but apparently never consider performing experiments to test their ideas.


Sometimes one Lewis Structure is not Enough

Other halogen molecules form bonds like those in chlorine molecule: one single bond between atoms and three lone pairs of electrons per atom. This allows each halogen atom to have a noble gas electron configuration. The tendency of main group atoms to form enough bonds to obtain eight valence electrons is known as the octet rule. The number of bonds that atom can form can often be predicted from the number of electrons needed to reach octet; this is especially true of nonmetals of the second period of the periodic table. For example, each atom of group 14 elements has four electrons in its outermost shell and therefore requires four more electrons to reach the octet. These four electrons can be gained by forming four covalent bonds, as illustrated here for carbon and silicon in. Because hydrogen only needs two electrons to fill its valence shell, it is an exception to the octet rule. Transition elements and inner transition elements also do not follow the octet rule: group 15 elements such as nitrogen have five valence electrons in atomic Lewis symbol: one lone pair and three unpaired electrons. To obtain octet, these atoms form three covalent bonds, as in. Oxygen and other atoms in group 16 obtain octets by forming two covalent bonds:

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

The Octet Rule

Considering the tremendous variety of properties OF elements and compounds in the periodic system, it is asking great deal to expect rules as simple as Lewis octet theory to be able to predict all formulas or to account for all molecular structures involving covalent bonds. Lewis theory concentrates on resemblances to noble - gas ns 2 np 6 valence octets. Therefore, it is most successful in accounting for formulas OF compounds OF representative elements, whose distinguishing electrons are also S and P electrons. The Octet rule is much less useful in dealing with compounds OF transition elements or inner transition elements, most of which involve some participation OF d or F orbitals in bonding. Even among representative elements, there are some exceptions to Lewis theory. These fall mainly into three categories: some stable molecules simply do not have enough electrons to achieve octets around all atoms. This usually occurs in compounds containing Be or B. Elements in third period and below can accommodate more than octet OF electrons. Although elements such as Si, P, S, Cl, Br, and I obey octet rule in many cases, under other circumstances they form more bonds than rule allows.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Double and Triple Bonds

Not all bonds are ionic or covalent; weaker bonds can also form between molecules. Two types of weak bonds that frequently occur are hydrogen bonds and van der Waals interactions. Without these two types of bonds, life as we know it would not exist. Hydrogen bonds provide many of the critical, life - sustaining properties of water and also stabilize structures of proteins and DNA, building block of cells. When polar covalent bonds containing hydrogen are form, hydrogen atom in that bond has a slightly positive charge because share electrons are pulled more strongly toward other elements and away from the hydrogen atom. Because hydrogen has slightly positive charge, it attracts neighboring negative charges. Weak interaction between + charge of hydrogen atom from one molecule and - charge of more electronegative atom is called hydrogen bond. Individual hydrogen bonds are weak and easily break; however, they occur in very large numbers in water and in organic polymers, and additive force can be very strong. For example, hydrogen bonds are responsible for zipping together DNA double helix. Like hydrogen bonds, van der Waals interactions are weak interactions between molecules. Van der Waals attractions can occur between any two or more molecules and are dependent on slight fluctuations of electron densities, which can lead to slight temporary dipoles around molecule. For these attractions to happen, molecules need to be very close to one another. These bonds, along with hydrogen bonds, help form three - dimensional structures of proteins in our cells that are required for their proper function. Interactions between different types of molecules: In this interactive, you can explore how different types of molecules interact with each other based on their bonds.


Covalent Bonds

Unlike ionic bond, covalent bond is stronger between two atoms with similar electronegativity. For atoms with equal electronegativity, bond between them will be non - polar covalent interaction. In non - polar covalent bonds, electrons are equally shared between two atoms. For atoms with differing electronegativity, bond will be polar covalent interaction, where electrons will not be shared equally. Ionic solids are generally characterized by high melting and boiling points along with brittle, crystalline structures. Covalent compounds, on the other hand, have lower melting and boiling points. Unlike ionic compounds, they are often not soluble in water and do not conduct electricity when solubilized.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Example 1

We begin our discussion of the relationship between structure and bonding in covalent compounds by describing the interaction between two identical neutral atomsfor, example, H 2 molecule, which contains purely covalent bond. Each hydrogen atom in H 2 contains one electron and one proton, with the electron attracted to the proton by electrostatic forces. As two hydrogen atoms are brought together, additional interactions must be considered figure: electrons in two atoms repel each other because they have the same charge. Similarly, protons in adjacent atoms repel each other. An electron in one atom is attracted to an oppositely charged proton in the other atom and vice versa. Recall that it is impossible to specify precisely the position of electron in either hydrogen atom. Hence, quantum mechanical probability distributions must be used Plot of potential energy of system as function of internuclear distance figure: shows that system becomes more stable as two hydrogen atoms move toward each other from r =, until energy reaches minimum at r = r 0. Thus, at intermediate distances, proton - electron attractive interactions dominate, but as distance becomes very short, electron - electron and proton - proton repulsive interactions cause energy of the system to increase rapidly. Notice the similarity between Figures: and: which describe a system containing two oppositely charge ions. The shapes of energy versus distance curves in two figures are similar because they both result from attractive and repulsive forces between charge entities. At long distances, both attractive and repulsive interactions are small. As the distance between atoms decreases, attractive electron - proton interactions dominate, and energy of system decreases. At observed bond distance, repulsive electron - electron and proton - proton interactions just balance attractive interactions, preventing further decrease in internuclear distance. At very short internuclear distances, repulsive interactions dominate, making the system less stable than isolated atoms. Neutral hydrogen atom has one valence electron. Each hydrogen atom in molecule shares one pair of bonding electrons and is therefore assigned one electron [0 Nonbonding e +]. Using Equation to calculate formal charge on hydrogen, we obtain calculate formal charges on each atom of NH 4 + ion. Identify the number of valence electrons in each atom in NH 4 + ion. Use Lewis electron structure of NH 4 + to identify the number of bonding and nonbonding electrons associated with each atom and then use Equation to calculate the formal charge on each atom. The Lewis electron structure for NH 4 + ion is as follow: nitrogen atom shares four bonding pairs of electrons, and the neutral nitrogen atom has five valence electrons. Using Equation, formal charge on nitrogen atom is therefore {matheq} formal\; charge\left ( N \right )=5-\left ( 0+\dfrac{8}{2} \right )=0 {endmatheq} Each hydrogen atom has one bonding pair.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Fullerene Chemistry

Carbon soot has been known to man since prehistoric times, but it was not until fairly recently that the molecular structure of the main component of soot was discover. In 1996, Nobel Prize in Chemistry was awarded to Richard Smalley, Robert Curl, and Harold Kroto for their work in discovering a new form of Carbon, C 60 buckminsterfullerene molecule. Entire classes of compounds, including spheres and tubes of various shapes, were discovered based on C 60. This type of molecule, called fullerene, shows promise in a variety of applications. Because of their size and shape, fullerenes can encapsulate other molecules, so they have shown potential in various applications from hydrogen storage to target drug delivery systems. They also possess unique electronic and optical properties that have been put to good use in solar powered devices and chemical sensors.


Lewis Structures

For very simple molecules and molecular ions, we can write Lewis structures by merely pairing up unpaired electrons on constituent atoms. See these examples: For more complicated molecules and molecular ions, it is helpful to follow the step - by - step procedure outlined here: determining total number of valence electrons. For cations, subtract one electron for each positive charge. For anions, add one electron for each negative charge. Draw skeleton structure of a molecule or ion, arranging atoms around the central atom. Connect each atom to the central atom with a single bond. Distribute remaining electrons as lone pairs on terminal atoms, completing octet around each atom. Place all remaining electrons on the central atom. Rearrange electrons OF outer atoms to make multiple bonds with central atom in order to obtain octets wherever possible. Let us determine Lewis structures OF, and as example in following this procedure: determine the total number OF valence electrons in molecule or ion. For molecule, we add the number OF valence electrons on each atom in molecule: SiH 4 Si: 4 valence electrons / atom 1 atom = 4 + H: 1 valence electron / atom 4 atoms = 4 = 8 valence electrons. For negative ion, we add the number OF valence electrons on atoms to the number OF negative charges on ion: CHO 2 - C: 4 valence electrons / atom 1 atom = 4 H: 1 valence electrons / atom 1 atom = 1 O: 6 valence electrons / atom 2 & atoms = 12 + 1 additional electron = 18 valence electrons For positive ion, such as, We add number OF valence electrons on atoms in ion and then subtract number OF positive charges on ion from total number OF valence electrons: NO + N: 5 valence electrons / atom 1 atom = 5 O: 6 valence electrons / atom 1 atom = 6 + - 1 electron = 10 valence electrons Since is neutral molecule, We simply add number OF valence electrons: OF 2 O: 6 valence electrons / atom 1 atom = 6 + F: 7 valence electrons / atom 2 atoms = 14 = 20 valence electrons Draw skeleton structure OF molecule or ion, arranging atoms around central atom and connecting each atom to central atom with single bond. When several arrangements OF atoms are possible, as For, we must use experimental evidence to choose the correct one. In general, less electronegative elements are more likely to be central atoms. In, less electronegative carbon atoms occupy central position with oxygen and hydrogen atoms surrounding them. Other examples include In, In, and In. The exception is that hydrogen is almost never the central atom. Like most electronegative element,ss fluorine also cannot be central atom. Distribute remaining electrons as lone pairs on terminal atoms to complete their valence shells with octet OF electrons.


Lewis Symbols

We use Lewis symbols to describe valence electron configurations of atoms and monatomic ions. Lewis symbols consist of elemental symbols surrounded by one dot for each of its valence electrons: table below shows Lewis symbols for elements of the third period of the periodic table. Lewis symbols can also be used to illustrate formation of cations from atoms, as shown here for sodium and calcium: likewise, they can be used to show formation of anions from atoms, as shown here for chlorine and sulfur: following table demonstrates use of Lewis symbols to show transfer of electrons during formation of ionic compounds.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Example 2

Phosphorus pentachloride is an exception to the octet rule. You can see Lewis structure of PCl 3 in practice problems below. Because the chlorine atom only needs one electron to complete its valence shell, it shares one and only one electron with phosphorus, so in PCl 5, phosphorus is surrounded by a total of ten electrons. It does this by using its d - shell electrons. A more 3 - dimensional structure is shown on right. Three chlorines are in the plane and the line containing the other two cuts through the center of that triangle and is perpendicular to it. Arrangement is called trigonal bipyramid.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Solutions

We use Lewis symbols to describe valence electron configurations of atoms and monatomic ions. The Lewis symbol consists of an elemental symbol surrounded by one dot for each of its valence electrons: shows Lewis symbols for elements of the third period of the periodic table. Lewis symbols can also be used to illustrate formation of cations from atoms, as shown here for sodium and calcium: likewise, they can be used to show formation of anions from atoms, as shown here for chlorine and sulfur: demonstrates use of Lewis symbols to show transfer of electrons during formation of ionic compounds.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Introduction to Lewis Structures

Electron Dot structures, which were discussed in previous chapter, visually represent valence electrons that are present on atoms as dots that are written around elemental symbol. If two electrons are written on the same side of the electron Dot Structure, they are known as paired electrons. Therefore, unpaired electrons must exist alone on a particular side of the electron Dot structure. The Electron Dot Structure for Sulfur, which contains both paired and unpaired electrons, is shown below in figure: presence of unpaired electrons within atom is inherently destabilizing. Therefore, if two atoms that contain unpaired electrons approach one another, those electrons will interact with one another to form shared pair of electrons. The resultant covalent, or molecular, bond is drawn as a line in a two - dimensional picture called Lewis Structure. These structural images are named after Gilbert Lewis, American chemist who first proposed that covalent molecules could be represented visually. Any paired electrons that are present in atoms are already sufficiently stable and, consequently, do not form bonds. Instead, those electrons will remain as lone, or unshared, pairs, which are represented as dots in Lewis structures. A covalent molecule is formed once all of the involved atoms have achieved stable electron configurations. The process for drawing the Lewis Structure of covalent molecule will be described in the following paragraphs.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

Sources

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions.

* Please keep in mind that all text is machine-generated, we do not bear any responsibility, and you should always get advice from professionals before taking any actions

logo

Plex.page is an Online Knowledge, where all the summarized are written by a machine. We aim to collect all the knowledge the World Wide Web has to offer.

Partners:
Nvidia inception logo
jooble logo

© All rights reserved
2021 made by Algoritmi Vision Inc.

If your domain is listed as one of the sources on any summary, you can consider participating in the "Online Knowledge" program, if you want to proceed, please follow these instructions to apply.
However, if you still want us to remove all links leading to your domain from Plex.page and never use your website as a source, please follow these instructions.